Call for Abstract

17th World Congress on Drug Formulation & Drug Delivery , will be organized around the theme “Frontier Novelties in Drug Formulations & Drug Delivery ”

Drug Formulation Congress 2019 is comprised of 16 tracks and 91 sessions designed to offer comprehensive sessions that address current issues in Drug Formulation Congress 2019.

Submit your abstract to any of the mentioned tracks. All related abstracts are accepted.

Register now for the conference by choosing an appropriate package suitable to you.

Drug design is the method of inventing innovative medications. Drug design defines the design of molecules that are corresponding in shape and charge to the bio molecular target with which they interact and therefore will bind to it. Generally, the drug is a tiny organic molecule which triggers or slows down the activity of a bio-molecule such as a protein which repeatedly results in a medicinal benefit to the patient. Discovery of drugs is challenging. Various medications are invented by chance observations, the scientific examination of other medicines or by finding out the side effects of some other drugs. A methodical technique is significant screening observations where important drug targets are tested with thousands of various compounds to observe, whether conversations occur. Basically, drug design involves design of small molecules that are harmonizing in shape and charge to the bio molecular target to which they act together and consequently will bind to it.

  • Track 1-1Innovative Strategies of Drug Design & Development
  • Track 1-2Synthesis in Drug Discovery
  • Track 1-3Pharmacogenetics in Drug Discovery
  • Track 1-4Stages of Drug Discovery
  • Track 1-5Structure based drug design
  • Track 1-6Drug targets
  • Track 1-7Drug Release Testing

The processes of designing a new drug by using bioinformatics implements have opened a new area of drug research and development. Computational techniques assist us in searching drug target and in designing drug. Bioinformatics affects a new drug design in the following drug design path.

By using computational methods and the 3D structural information of the protein target, we are now able to scrutinise the detailed underlying molecular and atomic interactions involved in ligand:protein interactions and thus interpret experimental results in detail. The use of computers in drug discovery bears the additional advantage of delivering new drug candidates more rapidly and cost-efficiently. Computer-aided drug discovery has recently had important successes: new ligands have been predicted along with their receptor-bound structures and in several circumstances the achieved hit rates (ligands discovered per molecules tested) have been significantly greater than through experimental high-throughput screening. Strategies for CADD vary depending on the extent of structural and other information available regarding the target (enzyme/receptor) and the ligands.

  • Track 2-1Steps involved in CADD
  • Track 2-2Bioinformatics in CADD
  • Track 2-3Drug Design Software
  • Track 2-4Homology Modeling

Technological advancements in the molecular characterization of cancers have assisted researchers to identify an increasing number of key molecular drivers of cancer progression. These drug discoveries have led to multiple novel anticancer therapeutics, and clinical advantage in selected patient populations. Despite this, the identification of clinically relevant predictive biomarkers of response continues to lag behind. In this review, we discuss strategies for the molecular characterization of cancers and the importance of biomarkers for the development of novel antitumor therapeutics.

The discovery and evaluation of any novel biomarkers will ideally be specialised to Clinical Laboratory Improvement Amendments (CLIA) and Good Clinical Laboratory Practice (GCLP) standards, so as to ensure accuracy and reproducibility of laboratory procedures. Predictive biomarkers indicate the likelihood of response to a specific antitumor therapy. Such assays should be scientifically sound, Predictive biomarkers include both tumor-specific and surrogate biomarkers, and are crucial to accelerating the drug development process

  • Track 3-1Biomarker Discovery for Immuno-Oncology Agents
  • Track 3-2Biomarkers in Drug Design & Clinical Trial
  • Track 3-3Dose-Selection Biomarkers
  • Track 3-4Biomarkers of Toxicity & Pharmacology
  • Track 3-5Biomarkers of Efficacy

Drug Formulation is the study of relationships between pre formulation, pharmaceutical formulation, delivery, disposition and clinical response. The inherent instability nature of a new drug will alter its preferred form into undesired form when presented in a suitable dosage form with the excipient/s upon storage. In early days this process was restricted only for assessing few characteristics, but today this process is being considered as a formulation strategy and hence tremendous technological advancement has been accomplished in this field which enables us to save time and money through planned management system and hence impacts Drug Formulation 2017 to be a formulation conference. Use of glorious statistical software even based on artificial neural networking are made the task of pre formulation and optimization process easier. Role of pre formulation studies techniques like freeze drying aspects projects the event Drug Formulation 2017 to pose as a freeze drying meeting in drug discovery, drug development plays major role in pharmaceutical formulation development and the revisions will help in different dosage forms design. With the increasing number of novel and specialized compounds being developed, a "one size fits all" approach to drug formulation and delivery is no longer optimal, necessitating the consideration of formulations unique to each drug. NDDS conference will discuss on Premature Approaches, Present Scenario and Future Prospects of Pre formulation events. There are more than 1400 sustained or controlled release drugs have been approved all over the world. Pharmaceutical conferences discuss the state-of-art technology being applied and involve advances in formulation studies.

  • Track 4-1Pre-formulation in Drug Development
  • Track 4-2Product Design to Commercial Dosage Form
  • Track 4-3Major challenges in Drug Development
  • Track 4-4Preclinical Formulations
  • Track 4-5Biopharmaceutical Support in Formulation
  • Track 4-6Types of Formulation
  • Track 4-7Parenteral Formulations

Pharmacokinetics is currently defined as the study of the time course of drug absorption, distribution, metabolism, and excretion. Clinical pharmacokinetics is the application of pharmacokinetic principles to the safe and effective therapeutic management of drugs in an individual patient. Primary goals of clinical pharmacokinetics include enhancing efficacy and decreasing toxicity of a patient’s drug therapy. The development of strong correlations between drug concentrations and their pharmacologic responses has enabled clinicians to apply pharmacokinetic principles to actual patient situations.

Pharmacodynamics refers to the relationship between drug concentration at the site of action and the resulting effect, including the time course and intensity of therapeutic and adverse effects. The effect of a drug present at the site of achievement is determined by that drug’s binding with a receptor. Receptors may be present on neurons in the central nervous system (i.e., opiate receptors) to depress pain sensation, on cardiac muscle to affect the intensity of contraction, or even within bacteria to disrupt maintenance of the bacterial cell wall

  • Track 5-1Effects of Pharmacokinetics and Pharmacodynamics
  • Track 5-2Receptor Binding and Effect
  • Track 5-3Toxicodynamics
  • Track 5-4Pharmacokinetic Analysis
  • Track 5-5Pharmacodynamic Analysis

Clinical Biotherapeutic aspects including study drug design, drug-drug interactions, QT assessment, immunogenicity, comparability, special populations (hepatic and liver failure), PK and PD, regulatory expectations of PK and PD characterization, as well as reviewing factors which influence the ADME of Biotherapeutics. The objectives of early clinical development of therapeutic proteins are the same as for small molecules i.e. to investigate the molecule in a manner that will gain necessary knowledge about its tolerability safety pharmacokinetics (PK) and if possible pharmacodynamics (PD) effects in the most appropriate human populations while simultaneously protecting their safety. However, there are specific features of proteins that must be considered when designing clinical pharmacology studies.

  • Track 6-1Discovery & Preclinical Testing
  • Track 6-2Clinical Study Designs
  • Track 6-3Alternative Trials Design & Models
  • Track 6-4Data Collection & Quality Control
  • Track 6-5Advanced Information Technology in Clinical trials
  • Track 6-6Clinical Trial Protocol
  • Track 6-7Recent Technology in Biopharmaceuticals

Size reduction is a fundamental unit operation having important applications in pharmacy. It helps in improving solubility and bioavailability, reducing toxicity, enhancing release and providing better drug formulation opportunities for drugs. In most of the cases, size reduction is limited to micron size range, for example, various pharmaceutical dosage forms like powder, emulsion, suspension etc. Drugs in the nano meter size range enhance performance in a variety of dosage forms. Major advantages of nanosizing include (i) increased surface area, (ii) enhanced solubility, (iii) increased rate of dissolution, (iv) increased oral bioavailability, (v) more rapid onset of therapeutic action, (vi) less amount of dose required, (vii) decreased fed/fasted variability, and (viii) decreased patient-to-patient variability.

Pharmaceutical nanotechnology has provided more fine-tuned diagnosis and focused treatment of disease at a molecular level. Pharmaceutical nanotechnology is most innovative and highly specialized field, which will revolutionize the pharmaceutical industry in near future. Pharmaceutical nanotechnology presents revolutionary opportunities to fight against many diseases. It helps in detecting the antigen associated with diseases such as cancer, diabetes mellitus, neurodegenerative diseases, as well as detecting the microorganisms and viruses associated with infections. It is expected that in next 10 years market will be flooded with nanotechnology devised medicine.

  • Track 7-1Nanotechnogy methods in Drug Design
  • Track 7-2Nanotechnology Fundamental Concepts
  • Track 7-3Nanomedicine
  • Track 7-4Nanometrology
  • Track 7-5Nano Robotics
  • Track 7-6Nano Science &Technology
  • Track 7-7Medical Applications in Nanotechnology

Identifying drug targets plays essential roles in designing new drugs and combating diseases. Unfortunately, our current understanding about drug targets is far from comprehensive. Screening drug targets in the lab is an expensive and time-consuming procedure. In the past decade, the accumulation of various types of study of science related data makes it possible to develop computational approaches to predict drug targets. Non-communicable diseases such as cancer, atherosclerosis and diabetes are responsible for most important social and health affliction as millions of people are dying every year. Out of which, atherosclerosis is the leading cause of deaths worldwide. The lipid abnormality is one of the most important modifiable risk factors for atherosclerosis. Both genetic and environmental components are associated with the development of atherosclerotic plaques. Immune and inflammatory mediators have a complex role in the initiation and progression of atherosclerosis. Understanding of all these processes will help to invent a range of new biomarkers and novel treatment modalities targeting various cellular events in acute and chronic inflammation that are accountable for atherosclerosis. Several biochemical pathways, recetors and enzymes are involved in the development of atherosclerosis that would be possible targets for improving strategies for disease diagnosis and management.

  • Track 8-1Smart Drug Delivery Technology
  • Track 8-2Design & Characterization of Nano Drug Systems
  • Track 8-3Design & Delivery of nano drug
  • Track 8-4Drug Delivery Carriers
  • Track 8-5Administration Routes

Medicinal Chemistry is a branch of chemistry which especially agreements with synthetic organic chemistry and pharmacology including various other biological specialties which is involved with design, chemical reation and development of drug for marketing of pharmaceutical agents. It combines knowledge and capacities from the fields of cheminformatics, molecular modeling and important bioinformatics and demands an in-depth appreciative of the physico-chemical properties of a three-dimensional molecule. The information base required by today's medicinal chemist has increased dramatically and has highlighted an rising challenge for chemists to understand the growing field of drug design.

  • Track 9-1Drug Delivery
  • Track 9-2Drug Design
  • Track 9-3Genomics & Proteomics
  • Track 9-4Virtual Chemistry
  • Track 9-5Stem-cell Therapy, Vaccination, Gene Therapy
  • Track 9-6Non-human Experimental Aspects
  • Track 9-7Diagnostic Clinical Chemistry
  • Track 9-8Clinical Chemistry & Laboratory Medicine

Drug manufacturing (Pharmaceutical Manufacturing) is the process of industrial-scale synthesis of pharmaceutical drugs by pharmaceutical companies. The process of drug manufacturing can be demolished down into a series of unit operations, such as milling, granulation, coating, tablet pressing, and others. The changing pharmaceutical landscape is a popular discussion point as of late. Armed with a fresh, non-blockbuster-reliant business model and treatment options that are expanding from small molecules to a range of new, more targeted therapies, the industry is at what PwC calls, “a critical juncture.”

Parenteral drug delivery is the second largest segment of this transformative pharmaceutical market covered only by the more maturehttps://drugformulation.pharmaceuticalconferences.com/abstract-submission.php  accounting for nearly 30 percent of total pharma market share. According to Survey, the market for parenteral drug delivery  products is projected to rise over 10 percent annually to $86.5 billion in 2019.

  • Track 10-1Unit operations
  • Track 10-2Formulation & Pre-formulation Development
  • Track 10-3Manufacturing Steps
  • Track 10-4Ensuring that Products Meet Specifications

Pharmaceutical engineering is a branch of pharmaceutical science and technology that involves development and manufacturing of products, processes, and components in the pharmaceuticals industry (i.e. drugs & biologics). While developing pharmaceutical products involves many interrelated disciplines (e.g. medicinal chemists, analytical chemists, clinicians/pharmacologists, pharmacists, chemical engineers, biomedical engineers, etc.), the specific subfield of "pharmaceutical engineering" has only emerged recently as a divergent engineering discipline. This now brings the problem-solving principles and quantitative training of engineering to complement the other scientific fields already involved in drug development.

  • Track 11-1Pharmaceutical Engineering
  • Track 11-2Technical Chemistry
  • Track 11-3Pharmaceutical Research & Development
  • Track 11-4Chemical Engineering Research
  • Track 11-5Biomedical Engineering

Regulatory Affairs contributes essentially to the overall success of drug development, both at early pre-marketing stages and at all times post-marketing. The pharmaceutical industry deals with an increasing number of interesting drug candidates, all of which necessitate the involvement of the Regulatory Affairs’ department. Regulatory Affairs professionals can play a key role in guiding drug development strategy in an increasingly global environment. But they also play an important operational role, for example, by considering the best processes to follow and enabling structured interaction with regulatory authorities. Regulatory Affairs is driven by good science and accordingly nothing remains static.

  • Track 12-1Regulatory Affairs for Clinical Trails
  • Track 12-2Management of Quality Standards
  • Track 12-3Regulatory Consulting & Market Analysis
  • Track 12-4Quality Assurance in Regulatory Affairs
  • Track 12-5Pharmaceutical Companies & Regulatory Guidelines
  • Track 12-6Healthcare Regulatory Affairs
  • Track 12-7Regulatory Affairs Profession

Bioequivalence studies are done for both Early & late Clinical Trial formulations, Formulations used in clinical trials and stability studies, if different Clinical trial formulations and to-be-marketed drug product when it comes to cost and productivity metrics, it’s often said that what gets measured gets done. Bioequivalence is determined based on the bioavailability of the innovator medicine versus the generic medicine. The outline for bioequivalence study includes the organization of test and reference items on two events to volunteer subjects, with every organization isolated by a washout period. This Study involves parameters on (Cmax) and (AUC), Statistical evaluation.

Assessment of the bioequivalence of generic versions of certain reference drugs is complicated by the presence of endogenous levels of said compounds which cannot be distinguished from externally derived compound levels following drug administration. If unaccounted for, the presence of endogenous compound biases towards equivalence in bioequivalence studies of these drugs. Bioequivalence assessments may be complicated further as disposition of the exogenous analogue can be subject to various endogenous processes resulting in nonlinear pharmacokinetics. To overcome these inherent biases a number of different strategies have been employed.

  • Track 13-1Analytical Techniques in Chemical Engineering
  • Track 13-2Chemical Engineering
  • Track 13-3Pharmaceutical Chemistry and Engineering
  • Track 13-4Pharmaceutical Analytical Chemistry
  • Track 13-5Bioequivalence Protocols : In vitro-In vivo correlation
  • Track 13-6Dissolution Studies
  • Track 13-7Genetic Phenotyping
  • Track 13-8Response of clinical studies

The aim of bioavailability study is to find out the dosage form influence on the biological performance of the drug, sensitivity to detect differences in the rate and extent of absorption. Bioavailability and bioequivalence study design involves Single dose or multi dose standard 2x 2 crossovers, Parallel groups, for more than two formulations. Study design meant for estimating essential pharmacokinetic parameters differs significantly from a bioequivalence study meant for comparing the test formulation. The results of a pilot study can be used as the sole basis to document BA or BE provided the study’s design and execution are suitable and enough subjects have completed the study

  • Track 14-1Novel Drug Delivery Systems- BA/BE approach
  • Track 14-2Generic drugs: Current claims and future directions
  • Track 14-3BA/BE Studies for Immediate-Release Solid Oral Dosage Forms
  • Track 14-4Bioequivalence analysis of highly variable drugs
  • Track 14-5Bioavailability Study for cancer drugs
  • Track 14-6Food-effect bioavailability and fed bioequivalence studies

The global market for Business Development of Drug Delivery Technology in 2010 was $131.6 billion and is expected to rise at a compound annual growth rate (CAGR) of 5% and reach nearly $175.6 billion by 2016. The U.S  constituted approximately 59% of the total drug delivery market in 2010 and was $78 billion. It is forecast to reach nearly $103 billion in 2016 at a CAGR of 4.7%. Europe contributed about 27% of the total drug delivery market in 2010 and was $36 billion and is expected to grow to $49 billion by 2016 at a CAGR of 5.6% in 2013, Drug Delivery Global market reached $150.3 billion, according to BCC research. This was an increase from $142 billion the previous year. Given its predicted annual growth the market represents a considerable business opportunity, which has been reflected in increasing number of drug delivery specialists. Consistent quality and competitive costs of product improves Production performance and continuity of supply and Product and technology auditing and due diligence with minimizing Regulatory Issues, quality control, and business development Business opportunities in drug delivery.

In bioscience and drugs, to  small grade molecule may be a coffee mass (<900 Daltons [1]) compound which is incapable to facilitate regulate a process, with a size on the order of 10−9 m. Most drug analysis square measure identical little molecules. For analysis of small organic molecules the subsequent devices ought to be recycled are as follows HPLC method, Chromatography, Ultraviolet-visible (UV-VIS) spectrophotometry, Infrared (IR) spectrometry and Mass spectrometry.

  • Track 16-1NMR techniques in organic chemistry
  • Track 16-2Current Brain research with NMR spectroscopy
  • Track 16-3Advanced medical imaging techniques (MRI)
  • Track 16-4Ultraviolet-visible (UV-VIS) spectrophotometry
  • Track 16-5Mass spectrometry in the analysis of small organic molecules
  • Track 16-6Best Industry Practices